Mechanical properties of hydroxyapatite whisker reinforced polyetherketoneketone composite scaffolds.
نویسندگان
چکیده
The apparent mechanical properties of hydroxyapatite (HA) whisker reinforced polyetherketoneketone (PEKK) scaffolds were evaluated in unconfined, uniaxial compression to investigate the effects of the porosity (75%, 82.5% and 90%), HA content (0, 20 and 40 vol%) and mold temperature (350, 365 and 375 ( composite function)C). Increased porosity resulted in a non-linear decrease in the elastic modulus and yield strength for both reinforced and unreinforced PEKK scaffolds, as expected. The increase in elastic modulus and yield strength with increased relative density followed a power-law, similar to trabecular bone and other open-cell foams. HA whisker reinforcement generally resulted in an increased elastic modulus from 0 to 20 vol% HA and a subsequent decrease from 20 to 40 vol% HA, while the yield strength and strain were decreased in scaffolds with 40 vol% HA compared to those with 0 or 20 vol% HA. Increased mold temperature resulted in an increased elastic modulus, yield strength and yield strain. These effects enabled the mechanical properties to be tailored to mimic human trabecular bone. The elastic modulus was greater than 50 MPa, and the yield strength was greater than 0.5 MPa, for scaffolds with 75% porosity at all combinations of reinforcement level and mold temperature. Scaffolds with 75% porosity and 20 vol% HA molded at 375 ( composite function)C exhibited a mean elastic modulus and yield strength of 149 MPa and 2.2 MPa, respectively, which was the highest of the conditions investigated in this study and similar to human vertebral trabecular bone. Therefore, HA whisker reinforced PEKK scaffolds may be advantageous for permanent implant fixation, including interbody spinal fusion.
منابع مشابه
Hydroxyapatite whisker-reinforced polyetherketoneketone bone ingrowth scaffolds.
Hydroxyapatite (HA) whisker-reinforced polyetherketoneketone (PEKK) bone ingrowth scaffolds were prepared and characterized. High levels of porosity (75-90%) and HA whisker reinforcement (0-40 vol.%) were attained using a powder processing approach to mix the HA whiskers, PEKK powder and a NaCl porogen, followed by compression molding at 350-375 degrees Celsius and particle leaching to remove t...
متن کاملHydroxyapatite Whisker Reinforced 63s Glass Scaffolds for Bone Tissue Engineering
Bioactive glass (BG) is widely used for bone tissue engineering. However, poor mechanical properties are the major shortcomings. In the study, hydroxyapatite nanowhisker (HANw) was used as a reinforcement to improve the mechanical properties. 63s glass/HANw scaffolds were successfully fabricated by selective laser sintering (SLS). It was found that the optimal compressive strength and fracture ...
متن کاملFabrication of Poly(ε-caprolactone) Scaffolds Reinforced with Cellulose Nanofibers, with and without the Addition of Hydroxyapatite Nanoparticles
Biomaterial properties and controlled architecture of scaffolds are essential features to provide an adequate biological and mechanical support for tissue regeneration, mimicking the ingrowth tissues. In this study, a bioextrusion system was used to produce 3D biodegradable scaffolds with controlled architecture, comprising three types of constructs: (i) poly(ε-caprolactone) (PCL) matrix as ref...
متن کاملImproving the mechanical and bioactivity of hydroxyapatite porous scaffold ceramic with diopside/forstrite ceramic coating
Objective(s): Scaffolds are considered as biological substitutes in bone defects which improve and accelerate the healing process of surrounding tissue. In recent years a major challenge in biomaterials is to produce porous materials with properties similar to bone tissue. In this study, the natural bioactive hydroxyapatite scaffolds with nano Diopside /Forstrite coating was successfully synthe...
متن کاملHydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites.
Synthetic hydroxyapatite (HA) whiskers have been utilized as a new, biocompatible reinforcement for orthopedic biomaterials. High-density polyethylene (HDPE) was reinforced with either the synthesized HA whiskers or a commercially available spherical HA powder using a novel powder processing technique that facilitated uniform dispersion of the reinforcements in the matrix prior to compression m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 2 6 شماره
صفحات -
تاریخ انتشار 2009